Obfuscation: know your enemy

Ninon EYROLLES

Serge GUELTON

[QUARKSLA

1 print

o

http://www.quarkslab.com

O~NOOTA WN -

print
a = .join([x for x in [chr(0x65 | 0x1), chr(ord()-2),
.lower (), .rstrip(
110::-11)
b = .join(map(chr, [x for x in [0x20, 0x73, 0x61, 0x80,
0x73, 0x20, 0x93, 0x68,
0x6c, 0x94, Ox6c, O0x6f]

if x < 0x801))

print a + b

),

0x79,
0x65,

o

http://www.quarkslab.com

Introduction

Plan

O Introduction
o What is obfuscation ?

© Control flow obfuscation
© Data flow obfuscation

@ Python obfuscation

o

http://www.quarkslab.com

Introduction
@00
What is obfuscation ?

Code obfuscation

Definition

Obfuscation is used to make code analysis as complex and expensive as
possible, while keeping the original behaviour of the program
(input/output equivalence).

o Malwares (try to avoid signature detection)
o Protection of sensitive algorithm (DRM, intellectual property...)

o Theoretically: transformation of symetric-key encryption in
asymetric-key encryption, homomorphic encryption algorithm...

o

http://www.quarkslab.com

Introduction
oeo
What is obfuscation ?

Don't shoot the messenger

Why this talk ?

— Obfuscation exists and is widely used.

— You might be interested in breaking it (to rewrite some code as free
software for example).

= If you want to break it, you need to know how it works!

o

http://www.quarkslab.com

Introduction
[e]e] J
What is obfuscation ?

Several obfuscation types

Control flow obfuscation
Data-flow obfuscation

Symbols rewriting: variable names, function names...

e 6 o6 o

Code encryption, packing...

o

http://www.quarkslab.com

Introduction
[e]e] J
What is obfuscation ?

Several obfuscation types

Control flow obfuscation
Data-flow obfuscation

Symbols rewriting: variable names, function names...

e 6 o6 o

Code encryption, packing...

o

http://www.quarkslab.com

Control flow obfuscation

© Introduction

© Control flow obfuscation
o Definitions
@ Control-flow obfuscation
o Control flow flattening

© Data flow obfuscation

@ Python obfuscation

o

http://www.quarkslab.com

Control flow obfuscation
o0
Definitions

Control flow

o lllustrates the execution flow of a program: the different paths that
are possible during the execution

o Cycles (for, while...), conditions (if), calls to other functions...

o It's represented with a Control Flow Graph (CFG): it's formed of
basic blocks and links between them

o

http://www.quarkslab.com

Control flow obfuscation
oe

Definitions

Control flow

[sub_us2880 proc near

Figure : CFG of pseudo-code

[Loc_usa27

Figure : CFG of assembly code

o

http://www.quarkslab.com

Control flow obfuscation
o
Control-flow obfuscation

Various techniques

The goal is to transform the structure of the CFG:

o

http://www.quarkslab.com

Control flow obfuscation
o
Control-flow obfuscation

Various techniques

The goal is to transform the structure of the CFG:

o loop unrolling;

o

http://www.quarkslab.com

Control flow obfuscation
o
Control-flow obfuscation

Various techniques

The goal is to transform the structure of the CFG:

@ loop unrolling; — search for patterns

o

http://www.quarkslab.com

Control flow obfuscation
o
Control-flow obfuscation

Various techniques

The goal is to transform the structure of the CFG:

@ loop unrolling; — search for patterns

o inlining of function;

o

http://www.quarkslab.com

Control flow obfuscation
o
Control-flow obfuscation

Various techniques

The goal is to transform the structure of the CFG:

@ loop unrolling; — search for patterns

@ inlining of function; — comparison of code

o

http://www.quarkslab.com

Control flow obfuscation
o
Control-flow obfuscation

Various techniques

The goal is to transform the structure of the CFG:

@ loop unrolling; — search for patterns
@ inlining of function; — comparison of code
@ junk code insertion;

o

http://www.quarkslab.com

Control flow obfuscation
o
Control-flow obfuscation

Various techniques

The goal is to transform the structure of the CFG:

o loop unrolling; — search for patterns
@ inlining of function; — comparison of code
@ junk code insertion; — liveness analysis

o

http://www.quarkslab.com

Control flow obfuscation
o
Control-flow obfuscation

Various techniques

The goal is to transform the structure of the CFG:

o loop unrolling; — search for patterns
@ inlining of function; — comparison of code
@ junk code insertion; — liveness analysis

@ opaque predicates;

o

http://www.quarkslab.com

Control flow obfuscation
o
Control-flow obfuscation

Various techniques

The goal is to transform the structure of the CFG:

o loop unrolling; — search for patterns
@ inlining of function; — comparison of code
@ junk code insertion; — liveness analysis

@ opaque predicates; — SMT solver

o

http://www.quarkslab.com

Control flow obfuscation
o
Control-flow obfuscation

Various techniques

The goal is to transform the structure of the CFG:

o loop unrolling; — search for patterns
@ inlining of function; — comparison of code
@ junk code insertion; — liveness analysis

@ opaque predicates; — SMT solver

o control flow flattening.

o

http://www.quarkslab.com

Control flow obfuscation
{ Jele]e]

Control flow flattening

Definition

Control flow flattening

o Transforms the structure of the program to make CFG
reconstruction difficult

o Encodes the control flow information and hide the result in the data
flow

o

http://www.quarkslab.com

Control flow obfuscation
(o] lele]

Control flow flattening

Principle

Implementation

@ Basic blocks are numbered

o A dispatcher handles the
execution

@ A variable contains the value of
the next block to be executed

o At the end of every block, this
variable is updated, and the
execution flow goes back to the
dispatcher which then jumps to
the next block

INIT
val =1

DISPATCHER
switch(val)

block 1 block 2 block 3
some code some code some code
val =2 val =3 return

Figure : Principle of control flow
flattening

o

http://www.quarkslab.com

Control flow obfuscation
0080
Control flow flattening

Example

T
L
|

———

=

Figure : original CFG

Figure : CFG after the control flow
flattening

o

http://www.quarkslab.com

Control flow obfuscation
{eJele]]
Control flow flattening

Weakness

What is the weakness of the control
INIT flow flattening ?

val =1

DISPATCHER
switch(val)
block 1 block 2 block 3
some code some code some code
val =2 val =3 return

o

http://www.quarkslab.com

Control flow obfuscation
{eJele]]
Control flow flattening

Weakness

What is the weakness of the control
INIT flow flattening ?

val =1

= variable containing the execution

flow
DISPATCHER
switch(val)

block 2 block 3
some code some code
val =3 return

o

http://www.quarkslab.com

Control flow obfuscation
{eJele]]
Control flow flattening

Weakness

What is the weakness of the control

T flow flattening ?

val =1

= variable containing the execution

flow
DISPATCHER
switch(val)
Obfuscation techniques:

o multiple (context) variables
block 1 block 2 block 3
paacaq d d i
3 } [Si'zlej"; some code o opaque predicates

o hash

o

http://www.quarkslab.com

Control flow obfuscation
{eJele]]

Control flow flattening

Weakness

INIT
val =1
DISPATCHER
switch(val)
block 1 block 2 block 3
paascage some code some code
val =3 return

1

What is the weakness of the control
flow flattening ?

= variable containing the execution
flow

Obfuscation techniques:
o multiple (context) variables
o opaque predicates

o hash

= dynamic analysis (tracing) can

also be used

http://www.quarkslab.com

Data flow obfuscation

© Introduction
© Control flow obfuscation

© Data flow obfuscation
o Definition
o A few techniques

@ Python obfuscation

o

http://www.quarkslab.com

Data flow obfuscation
o

Definition

Data Flow analysis

Several ways to do it

o Information provided by the program’s data: strings, numbers,
structures...

o Relations between the data or between the input and output (of a
program, a function, a basic block)

o Interactions between the program and the data: reading, writing,
location in memory...

o Formal notions: live variable, data flow equations, backward and
forward analysis...

o

http://www.quarkslab.com

Data flow obfuscation
L Je]
A few techniques

Examples

To make data analysis more complex:

o

http://www.quarkslab.com

Data flow obfuscation
L Je]
A few techniques

Examples

To make data analysis more complex:

@ encode constants (strings for example);

o

http://www.quarkslab.com

Data flow obfuscation
L Je]
A few techniques

Examples

To make data analysis more complex:

@ encode constants (strings for example);
— look for decoding routine

o

http://www.quarkslab.com

Data flow obfuscation
L Je]
A few techniques

Examples

To make data analysis more complex:

@ encode constants (strings for example);
— look for decoding routine

o insert useless data (close to junk code);

o

http://www.quarkslab.com

Data flow obfuscation
L Je]
A few techniques

Examples

To make data analysis more complex:

@ encode constants (strings for example);
— look for decoding routine

o insert useless data (close to junk code);
— use symbolic execution, data tainting / slicing

o

http://www.quarkslab.com

Data flow obfuscation
L Je]
A few techniques

Examples

To make data analysis more complex:

@ encode constants (strings for example);
— look for decoding routine

o insert useless data (close to junk code);
— use symbolic execution, data tainting / slicing

o complexify arithmetic operations on data;

x+y & (x@y)+2x(xAy)

o

http://www.quarkslab.com

Data flow obfuscation
L Je]
A few techniques

Examples

To make data analysis more complex:

@ encode constants (strings for example);
— look for decoding routine

o insert useless data (close to junk code);
— use symbolic execution, data tainting / slicing

o complexify arithmetic operations on data;
xty © (x@y)+2x(xNy)

— use bruteforce and build heuristic

o

http://www.quarkslab.com

Data flow obfuscation
(o]]
A few techniques

Examples

o modify the way data are stored / manipulated: split tables, change
the calling convention of functions, etc;

o

http://www.quarkslab.com

Data flow obfuscation
(o]]
A few techniques

Examples

o modify the way data are stored / manipulated: split tables, change
the calling convention of functions, etc;
— spot similar elements (probably processed by the same
instructions)
— dynamic analysis to get arguments of a function

o

http://www.quarkslab.com

Data flow obfuscation
(o]]
A few techniques

Examples

o modify the way data are stored / manipulated: split tables, change
the calling convention of functions, etc;
— spot similar elements (probably processed by the same
instructions)
— dynamic analysis to get arguments of a function

@ encode data while reading and writing.

-1

o

http://www.quarkslab.com

Data flow obfuscation
(o]]
A few techniques

Examples

o modify the way data are stored / manipulated: split tables, change
the calling convention of functions, etc;
— spot similar elements (probably processed by the same
instructions)
— dynamic analysis to get arguments of a function

@ encode data while reading and writing.

-1

— find the relevant variables, and look for the corresponding
encoding

o

http://www.quarkslab.com

Python obfuscation

© Introduction
© Control flow obfuscation
© Data flow obfuscation

@ Python obfuscation
o Modified Interpreter
@ Source-to-source obfuscation
o A few examples

o

http://www.quarkslab.com

Python obfuscation
o

o Applications are developed in Python (DropBox for example): a
modified interpreter is delivered with the binary

o Creation of "packers” to make access to the code difficult
o Few traditional obfuscations here!

@ Three ways to obfuscate:

- modified interpreter so that access to compiled files is difficult;
- measures to make decompilation harder;
- source to source obfuscation in case of decompilation success.

o

http://www.quarkslab.com

Python obfuscation
{ Jele]e]

Modified Interpreter

State of the art

Based on the work of Kholia and Wegrzyn':

Change the magic number

Number specific to each version of CPython, prevent decompilation
— bruteforce (~ 50 possibilities)

o

1L ooking Inside the (Drop) Box, by D. Kholia and P. Wegrzyn

http://www.quarkslab.com

Python obfuscation
{ Jele]e]

Modified Interpreter

State of the art

Based on the work of Kholia and Wegrzyn':

Change the magic number

Number specific to each version of CPython, prevent decompilation
— bruteforce (~ 50 possibilities)

Suppress some features

Remove some functions like PyRun_File (), or attributes like co_code

o

1L ooking Inside the (Drop) Box, by D. Kholia and P. Wegrzyn

http://www.quarkslab.com

Python obfuscation
{ Jele]e]

Modified Interpreter

State of the art

Based on the work of Kholia and Wegrzyn':

Change the magic number

Number specific to each version of CPython, prevent decompilation
— bruteforce (~ 50 possibilities)

Suppress some features

Remove some functions like PyRun_File (), or attributes like co_code

Opcode encryption
Encrypt compiled files — find decryption routine

o

1L ooking Inside the (Drop) Box, by D. Kholia and P. Wegrzyn

http://www.quarkslab.com

Python obfuscation
0@e00

Modified Interpreter

State of the art

Opcode remapping

Applies a permutation on the opcodes of the instruction set.

34 | LOAD_GLOBAL wln 75 LOAD_FAST
35 | CALL_FUNCTION G 23| LOAD_CONST
36 POP_TOP 12 ROT_TWO

o

http://www.quarkslab.com

Python obfuscation
0@e00

Modified Interpreter

State of the art

Opcode remapping

Applies a permutation on the opcodes of the instruction set.

34 | LOAD_GLOBAL wln 75 LOAD_FAST
35 | CALL_FUNCTION G 23| LOAD_CONST
36 POP_TOP 12 ROT_TWO

— Compare permuted bytecode with standard bytecode for standard
Python module

o

http://www.quarkslab.com

Modified Interpreter

State of the art

Python obfuscation
0@e00

Applies a permutation on the opcodes of the instruction set.

34 | LOAD_GLOBAL

35 | CALL_FUNCTION

36 POP_TOP

34 — 75
35 — 23
36 — 12

75
23
12

LOAD_FAST

LOAD_CONST

ROT_TWO

— Compare permuted bytecode with standard bytecode for standard

Python module

— Get into the application runtime and execute arbitrary code

Opcode remapping

o

http://www.quarkslab.com

Python obfuscation
00e0
Modified Interpreter

New techniques

Addition of new opcodes

Substitution of series of opcodes with a new opcode

LOAD_GLOBAL
CALL_FUNCTION =
POP_TOP

LOAD_GLOBAL
CALL_AND_POP

— Analyse the interpreter!

Insertion of junk opcode

http://www.quarkslab.com

Python obfuscation
00e0

Modified Interpreter

New techniques

Addition of new opcodes

Insertion of junk opcode

o Use opcodes for stack manipulation: ROT_TWO, ROT_THREE or
POP_TOP

o Combine it to modify bytecode without changing computed values

‘ LOAD_FAST 0 H LOAD_FAST 1 H BUILD_MAP H ROT_THREE H BINARY_ADD H ROT_TWO | POP_TOP ‘

o =

http://www.quarkslab.com

Python obfuscation
00e0

Modified Interpreter

New techniques

Addition of new opcodes

Insertion of junk opcode

o Use opcodes for stack manipulation: ROT_TWO, ROT_THREE or
POP_TOP

o Combine it to modify bytecode without changing computed values

‘ LOAD_FAST 0 H LOAD_FAST 1 H BUILD_MAP H ROT_THREE H BINARY_ADD H ROT_TWO | POP_TOP ‘

AN

VAR O

o =

http://www.quarkslab.com

Python obfuscation
00e0

Modified Interpreter

New techniques

Addition of new opcodes

Insertion of junk opcode

o Use opcodes for stack manipulation: ROT_TWO, ROT_THREE or
POP_TOP

o Combine it to modify bytecode without changing computed values

‘ LOAD_FAST 0 H LOAD_FAST 1 H BUILD_MAP H ROT_THREE H BINARY_ADD H ROT_TWO | POP_TOP ‘

A

VAR 1
VAR O

o =

http://www.quarkslab.com

Python obfuscation
00e0

Modified Interpreter

New techniques

Addition of new opcodes

Insertion of junk opcode

o Use opcodes for stack manipulation: ROT_TWO, ROT_THREE or
POP_TOP

o Combine it to modify bytecode without changing computed values

‘ LOAD_FAST 0 H LOAD_FAST 1 H BUILD_MAP H ROT_THREE H BINARY_ADD H ROT_TWO | POP_TOP ‘

AN

DICT
VAR 1
VAR O

o =

http://www.quarkslab.com

Python obfuscation
00e0

Modified Interpreter

New techniques

Addition of new opcodes

Insertion of junk opcode

o Use opcodes for stack manipulation: ROT_TWO, ROT_THREE or
POP_TOP

o Combine it to modify bytecode without changing computed values

‘ LOAD_FAST 0 H LOAD_FAST 1 H BUILD_MAP H ROT_THREE H BINARY_ADD H ROT_TWO | POP_TOP ‘

A

VAR 1
VAR O
DICT

o =

http://www.quarkslab.com

Python obfuscation
00e0

Modified Interpreter

New techniques

Addition of new opcodes

Insertion of junk opcode

o Use opcodes for stack manipulation: ROT_TWO, ROT_THREE or
POP_TOP

o Combine it to modify bytecode without changing computed values

‘ LOAD_FAST 0 H LOAD_FAST 1 H BUILD_MAP H ROT_THREE H BINARY_ADD H ROT_TWO | POP_TOP ‘

AN

VAR O + VAR 1
DICT

o =

http://www.quarkslab.com

Python obfuscation
00e0

Modified Interpreter

New techniques

Addition of new opcodes

Insertion of junk opcode

o Use opcodes for stack manipulation: ROT_TWO, ROT_THREE or
POP_TOP

o Combine it to modify bytecode without changing computed values

‘ LOAD_FAST 0 H LOAD_FAST 1 H BUILD_MAP H ROT_THREE H BINARY_ADD H ROT_TWO | POP_TOP ‘

A

DICT
VAR O + VAR 1

o =

http://www.quarkslab.com

Python obfuscation
00e0

Modified Interpreter

New techniques

Addition of new opcodes

Insertion of junk opcode

o Use opcodes for stack manipulation: ROT_TWO, ROT_THREE or
POP_TOP

o Combine it to modify bytecode without changing computed values

‘ LOAD_FAST 0 H LOAD_FAST 1 H BUILD_MAP H ROT_THREE H BINARY_ADD H ROT_TWO | POP_TOP ‘
A

VAR O + VAR 1

o =

http://www.quarkslab.com

Python obfuscation
00e0

Modified Interpreter

New techniques

Addition of new opcodes

Insertion of junk opcode

o Use opcodes for stack manipulation: ROT_TWO, ROT_THREE or
POP_TOP

o Combine it to modify bytecode without changing computed values

‘ LOAD_FAST 0 H LOAD_FAST 1 H BUILD_MAP H ROT_THREE H BINARY_ADD H ROT_TWO | POP_TOP ‘

— Prevent decompilation with uncompyle, but pycdc still works.

o =

http://www.quarkslab.com

Modified Interpreter

Self-modifying code

Python obfuscation
(eJele]]

1 def foo(b):
2 b += 1

During execution:

def foo(b):
modify_bytecode ()
b -=1

LOAD_GLOBAL

CALL_FUNCTION

POP_TOP

LOAD_FAST

LOAD_CONST

INPLACE_SUB

o

http://www.quarkslab.com

Python obfuscation
(eJele]]

Modified Interpreter

Self-modifying code

) 1 def foo(b):
1 def foo(b): 2 modify_bytecode ()
2 b += 1
2 3 b -= 1
4 B

During execution:

>| LOAD_GLOBAL K
CALL_FUNCTION
POP_TOP
LOAD_FAST
LOAD_CONST
INPLACE_SUB

o

http://www.quarkslab.com

Python obfuscation
(eJele]]

Modified Interpreter

Self-modifying code

) 1 def foo(b):
1 def foo(b): 2 modify_bytecode ()
2 b += 1
2 3 b -= 1
4 B

During execution:

LOAD_GLOBAL
> CALL_FUNCTION |<
POP_TOP
LOAD_FAST
LOAD_CONST
INPLACE_SUB

o

http://www.quarkslab.com

Python obfuscation
(eJele]]

Modified Interpreter

Self-modifying code

) 1 def foo(b):
1 def foo(b): 2 modify_bytecode ()
2 b += 1
2 3 b -= 1
4 B

During execution:

LOAD_GLOBAL
CALL_FUNCTION
> POP_TOP <

LOAD_FAST
LOAD_CONST
INPLACE_ADD

o

http://www.quarkslab.com

Python obfuscation
(eJele]]

Modified Interpreter

Self-modifying code

) 1 def foo(b):
1 def foo(b): 2 modify_bytecode ()
2 b += 1
2 3 b -= 1
4 B

During execution:

LOAD_GLOBAL
CALL_FUNCTION
POP_TOP
> LOAD_FAST K

LOAD_CONST
INPLACE_ADD

o

http://www.quarkslab.com

Python obfuscation
(eJele]]

Modified Interpreter

Self-modifying code

) 1 def foo(b):
1 def foo(b): 2 modify_bytecode ()
2 b += 1
2 3 b -= 1
4

During execution:

LOAD_GLOBAL
CALL_FUNCTION
POP_TOP
LOAD_FAST
> LOAD_CONST |
INPLACE_ADD

o

http://www.quarkslab.com

Python obfuscation
(eJele]]

Modified Interpreter

Self-modifying code

) 1 def foo(b):
1 def foo(b): 2 modify_bytecode ()
2 b += 1
2 3 b -= 1
4

During execution:

LOAD_GLOBAL
CALL_FUNCTION
POP_TOP
LOAD_FAST
LOAD_CONST
>| INPLACE_ADD |

o

http://www.quarkslab.com

Source-to-source obfuscation

Abstract Syntax Tree

Abstract Syntax Tree (AST): tree
representation of the abstract structure of
source code.

e Nodes are operators
e Leaves are operands

Python obfuscation
[1]

Figure : AST representation of
(x+y)xz

o

http://www.quarkslab.com

Python obfuscation

Source-to-source obfuscation

Python source-to-source

Python Module [.py] — ast.parse — Python AST

[NodeTransformer ‘

R + PrettyPrinter ¢«— Python AST

Figure : Compilation flow for Python source-to-source

(o] J

Obfuscation Examples

o

http://www.quarkslab.com

Python obfuscation
(o] J

Source-to-source obfuscation

Python source-to-source

Obfuscation Examples

o Control flow transformations: loop unrolling, mixing if and
while with opaque predicates, transformation in functional style

o Data flow transformations: string encoding, use of mixed
boolean-arithmetic expressions.

o Symbols obfuscation: replacing names of functions and variables
with random string

o

http://www.quarkslab.com

A few examples

Loop unrolling

1
2
3
4
5

for i in range(
if b & 1 ==
p "= a
hiBitSet =

a <<= 1

3):
1:

a & 0x80

OCO~NOO A WN

Python obfuscation
0000

i=20
if ((b & 1) == 1):
p "= a
hiBitSet = (a & 128)
a <<= 1
i=1
if ((b & 1) == 1):
p "= a
hiBitSet = (a & 128)
a <<= 1
i=2
if ((b & 1) == 1):
p "= a
hiBitSet = (a & 128)
a <<= 1

— Look for patterns (instructions, variables)

o

http://www.quarkslab.com

Python obfuscation
(o] lele)
A few examples

Mixing if and while

1 # obfuscated if
1 # original code 2 opaque_pred = 1
2 if condl: —_— 3 while opaque_pred & condi:
3 work () 4 work ()

5

opaque_pred = 0

— Holds only if the predicates are difficult to evaluate statically and not
obvious for a human

o

http://www.quarkslab.com

Python obfuscation
ooeo
A few examples

Opaque predicates

x = ((((2 * ((-816744550) | 816744552)) -
((-816744550) ~ 816744552)) *
(((3783141896 ~ 3921565134) -
(2 * ((~3783141896) & 3921565134))) |
((4009184523 & (~3870761249)) -
((~4009184523) & 3870761249)))) -
(((2105675179 & (~2244098417)) -
((~2105675179) & 2244098417)) -
((3657555079 + (~3519131805)) + 1)))

OCO~NOOOTHA WN -

— Use constant folding: x = 36

1 x = (80%b**2 + 160*b*(~ b) + 36821*b +
2 80% (~ b)**2 + 36821x(~ b) + 4236969) % 256

— Bruteforce, heuristics...

o

http://www.quarkslab.com

Python obfuscation
[e]e]e])

A few examples

Transformation in functional style

1 def fibo(m):

2 return n if n < 2 else (fibo(n - 1) + fibo(n - 2))
I
1 fibo = (lambda n: (lambda _: (_.__setitem__(, (L 1 if (
in _) else n) if ((_I[1 if (in _) else n) < 2)
else ((_I[] if (in _) else fibo) (((_I[] if (
in _) else n) - 1)) + (_I[1 if (in _) else
fibo) (((_[1 if (in _) else n) - 2))))), DI(-1D)
{ :n, : Nome}) [D

— Either you're comfortable with functional style, or you use
input/output analysis or symbols information.

o

http://www.quarkslab.com

Conclusion

o There's a lot of obfuscation techniques

o Understanding obfuscation can be useful (interoperability)

(]

Keep focused on the context and what you want to know

(4]

Every obfuscation can be broken with time and resources

o

http://www.quarkslab.com

Questions?

INNOVATIVE SECURITY

contact@quarkslab.com | @quarkslab.com

Table of contents

@ Introduction
@ What is obfuscation ?

© Control flow obfuscation
o Definitions
o Control-flow obfuscation
o Control flow flattening

© Data flow obfuscation
o Definition
o A few techniques

@ Python obfuscation
o Modified Interpreter
@ Source-to-source obfuscation
o A few examples

o

http://www.quarkslab.com

	Introduction
	What is obfuscation ?

	Control flow obfuscation
	Definitions
	Control-flow obfuscation
	Control flow flattening

	Data flow obfuscation
	Definition
	A few techniques

	Python obfuscation
	Modified Interpreter
	Source-to-source obfuscation
	A few examples

